Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Infect Genet Evol ; 105: 105373, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202207

RESUMO

Fasciola gigantica and hybrid Fasciola flukes, responsible for the disease fasciolosis, are found in Southeast Asian countries. In the present study, we performed molecular species identification of Fasciola flukes distributed in Terengganu, Malaysia using multiplex PCR for phosphoenolpyruvate carboxykinase (pepck) and PCR-restriction fragment length polymorphism (RFLP) for DNA polymerase delta (pold). Simultaneously, phylogenetic analysis based on mitochondrial NADH dehydrogenase subunit 1 (nad1) was performed for the first time on Malaysian Fasciola flukes to infer the dispersal direction among neighboring countries. A total of 40 flukes used in this study were identified as F. gigantica. Eight nad1 haplotypes were identified in the F. gigantica population of Terengganu. Median-joining network analysis revealed that the Malaysian population was related to those obtained from bordering countries such as Thailand and Indonesia. However, genetic differentiation was detected using population genetics analyses. Nevertheless, the nucleotide diversity (π) value suggested that F. gigantica with the predominant haplotypes was introduced into Malaysia from Thailand and Indonesia. The dispersal direction suggested by population genetics in the present study may not be fully reliable since Fasciola flukes were collected from a single location in one state of Malaysia. Further studies analyzing more samples from many locations are required to validate the dispersal direction proposed herein.


Assuntos
Distribuição Animal , DNA de Helmintos , Fasciola , Animais , Sudeste Asiático , DNA de Helmintos/genética , DNA Mitocondrial/genética , Fasciola/genética , Malásia , NADH Desidrogenase/genética , Filogenia , Filogeografia/métodos
2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930835

RESUMO

Statistical phylogeography provides useful tools to characterize and quantify the spread of organisms during the course of evolution. Analyzing georeferenced genetic data often relies on the assumption that samples are preferentially collected in densely populated areas of the habitat. Deviation from this assumption negatively impacts the inference of the spatial and demographic dynamics. This issue is pervasive in phylogeography. It affects analyses that approximate the habitat as a set of discrete demes as well as those that treat it as a continuum. The present study introduces a Bayesian modeling approach that explicitly accommodates for spatial sampling strategies. An original inference technique, based on recent advances in statistical computing, is then described that is most suited to modeling data where sequences are preferentially collected at certain locations, independently of the outcome of the evolutionary process. The analysis of georeferenced genetic sequences from the West Nile virus in North America along with simulated data shows how assumptions about spatial sampling may impact our understanding of the forces shaping biodiversity across time and space.


Assuntos
Modelos Estatísticos , Filogeografia/métodos , Dinâmica Populacional , Algoritmos , Teorema de Bayes , Ecossistema , Evolução Molecular , Humanos , América do Norte , Análise Espacial , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética
3.
PLoS One ; 16(11): e0259859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807924

RESUMO

Rhinoviruses (RV) are a major cause of Severe Acute Respiratory Infection (SARI) in children, with high genotypic diversity in different regions. However, RV type diversity remains unknown in several regions of the world. In this study, the genetic variability of the frequently circulating RV types in Northern Tunisia was investigated, using phylogenetic and phylogeographic analyses with a specific focus on the most frequent RV types: RV-A101 and RV-C45. This study concerned 13 RV types frequently circulating in Northern Tunisia. They were obtained from respiratory samples collected in 271 pediatric SARI cases, between September 2015 and November 2017. A total of 37 RV VP4-VP2 sequences, selected among a total of 49 generated sequences, was compared to 359 sequences from different regions of the world. Evolutionary analysis of RV-A101 and RV-C45 showed high genetic relationship between different Tunisian strains and Malaysian strains. RV-A101 and C45 progenitor viruses' dates were estimated in 1981 and 1995, respectively. Since the early 2000s, the two types had a wide spread throughout the world. Phylogenetic analyses of other frequently circulating strains showed significant homology of Tunisian strains from the same epidemic period, in contrast with earlier strains. The genetic relatedness of RV-A101 and RV-C45 might result from an introduction of viruses from different clades followed by local dissemination rather than a local persistence of an endemic clades along seasons. International traffic may play a key role in the spread of RV-A101, RV-C45, and other RVs.


Assuntos
Rhinovirus/classificação , Rhinovirus/genética , Síndrome Respiratória Aguda Grave/epidemiologia , Evolução Biológica , Proteínas do Capsídeo/genética , Criança , Pré-Escolar , Epidemias , Evolução Molecular , Feminino , Variação Genética/genética , Genótipo , Humanos , Lactente , Filogenia , Filogeografia/métodos , Pneumonia , Rhinovirus/patogenicidade , Síndrome Respiratória Aguda Grave/virologia , Tunísia/epidemiologia
4.
Sci Rep ; 11(1): 17984, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504218

RESUMO

Habitat fragmentation and loss have contributed significantly to the demographic decline of European wildcat populations and hybridization with domestic cats poses a threat to the loss of genetic purity of the species. In this study we used microsatellite markers to analyse genetic variation and structure of the wildcat populations from the area between the Dinaric Alps and the Scardo-Pindic mountains in Slovenia, Croatia, Serbia and North Macedonia. We also investigated hybridisation between populations of wildcats and domestic cats in the area. One hundred and thirteen samples from free-leaving European wildcats and thirty-two samples from domestic cats were analysed. Allelic richness across populations ranged from 3.61 to 3.98. The observed Ho values ranged between 0.57 and 0.71. The global FST value for the four populations was 0.080 (95% CI 0.056-0.109) and differed significantly from zero (P < 0.001). The highest FST value was observed between the populations North Macedonia and Slovenia and the lowest between Slovenia and Croatia. We also found a signal for the existence of isolation by distance between populations. Our results showed that wildcats are divided in two genetic clusters largely consistent with a geographic division into a genetically diverse northern group (Slovenia, Croatia) and genetically eroded south-eastern group (Serbia, N. Macedonia). Hybridisation rate between wildcats and domestic cats varied between 13% and 52% across the regions.


Assuntos
Animais Selvagens/genética , Variação Genética , Hibridização Genética , Repetições de Microssatélites/genética , Alelos , Animais , Gatos , Croácia , DNA Mitocondrial/genética , Frequência do Gene , Genótipo , Filogeografia/métodos , República da Macedônia do Norte , Sérvia , Eslovênia
5.
Viruses ; 13(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067745

RESUMO

The number of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases is increasing in India. This study looks upon the geographic distribution of the virus clades and variants circulating in different parts of India between January and August 2020. The NPS/OPS from representative positive cases from different states and union territories in India were collected every month through the VRDLs in the country and analyzed using next-generation sequencing. Epidemiological analysis of the 689 SARS-CoV-2 clinical samples revealed GH and GR to be the predominant clades circulating in different states in India. The northern part of India largely reported the 'GH' clade, whereas the southern part reported the 'GR', with a few exceptions. These sequences also revealed the presence of single independent mutations-E484Q and N440K-from Maharashtra (first observed in March 2020) and Southern Indian States (first observed in May 2020), respectively. Furthermore, this study indicates that the SARS-CoV-2 variant (VOC, VUI, variant of high consequence and double mutant) was not observed during the early phase of virus transmission (January-August). This increased number of variations observed within a short timeframe across the globe suggests virus evolution, which can be a step towards enhanced host adaptation.


Assuntos
COVID-19/epidemiologia , Filogeografia/métodos , SARS-CoV-2/genética , Adulto , COVID-19/genética , Feminino , Genoma Viral/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Filogenia , SARS-CoV-2/patogenicidade
6.
Mol Biol Rep ; 48(5): 4163-4169, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34086161

RESUMO

Revealing the genetic basis of the existence of different species living together in different geographic regions provides clarification of this phylogeographic differentiation. In this study, we investigated the population genetics and evaluated the level of genetic variation of inland and coastal populations of Mauremys and Emys in Turkey. Tissue samples of 196 terrapins were studied which were collected from syntopic coastal (Gölbent-Söke/Aydin; M. rivulata and E. orbicularis) and inland populations (Bahçesaray/Aksaray; M. caspica and E. orbicularis). DNA was isolated using the InnuPREP DNA Mini Kit. Mitochondrial DNA sequences and allelic variation at 13 microsatellite loci for Mauremys and 12 microsatellite loci for Emys were examined.  Three haplotypes were found for Emys orbicularis (Im, Ip and Iw) collected from the coastal region and two haplotypes for Emys orbicularis (Ig and Im) collected from inland. Two haplotypes were identified for M. caspica (Cmt8 and Cmt9) and three haplotypes were identified for M. rivulata (Rmt3, Rmt24 and Rmt26). Using microsatellites and the software STRUCTURE the most probable value for K was revealed as two 2 for both species. The FST value between M. rivulata and M. caspica was 0.39, and between the coastal and inland populations of E. orbicularis 0.09. It can be concluded that Emys populations tend to evolve by somehow preserving the allelic richness they have and Mauremys populations continue to differentiate so that new species emerge in the evolutionary process to reach the ideal allelic structure.


Assuntos
DNA Mitocondrial/genética , Fluxo Gênico , Repetições de Microssatélites/genética , Tartarugas/classificação , Tartarugas/genética , Alelos , Animais , Evolução Molecular , Água Doce , Loci Gênicos , Variação Genética , Haplótipos , Filogeografia/métodos , Software , Turquia
7.
Commun Biol ; 4(1): 630, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040154

RESUMO

Anopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this species' geographic range. Our population genomic analyses included a description of the structure of mainland populations, island populations, and connectivity between them. Three genetic clusters are identified among mainland populations and genetic distances (FST) fits an isolation-by-distance model. Genomic analyses are applied to estimate the demographic history and ancestry for each island. Taken together with the unique biogeography and history of human occupation for each island, they present a coherent explanation underlying levels of genetic isolation between mainland and island populations. We discuss the relationship of our findings to the suitability of São Tomé and Príncipe islands as candidate sites for potential field trials of genetic-based malaria control strategies.


Assuntos
Anopheles/genética , Genética Populacional/métodos , Mosquitos Vetores/genética , África/epidemiologia , Animais , Anopheles/metabolismo , Evolução Biológica , Evolução Molecular , Variação Genética/genética , Ilhas/epidemiologia , Malária/transmissão , Filogeografia/métodos , Sequenciamento Completo do Genoma/métodos
8.
PLoS One ; 16(4): e0250016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33836018

RESUMO

Much evidence suggests that Amazonia and the Atlantic Forest were connected through at least three dispersion routes in the past: the Eastern route, the central route, and the Western route. However, few studies have assessed the use of these routes based on multiple species. Here we present a compilation of mammal species that potentially have dispersed between the two forest regions and which may serve to investigate these connections. We evaluate the present-day geographic distributions of mammals occurring in both Amazonia and the Atlantic Forest and the likely connective routes between these forests. We classified the species per habitat occupancy (strict forest specialists, species that prefer forest habitat, or generalists) and compiled the genetic data available for each species. We found 127 mammalian species presently occurring in both Amazonia and the Atlantic Forest for which, substantial genetic data was available. Hence, highlighting their potential for phylogeographic studies investigating the past connections between the two forests. Differently from what was previously proposed, the present-day geographic distribution of mammal species found in both Amazonia and the Atlantic Forest points to more species in the eastern portion of the dry diagonal (and adjoining forested habitats). The Central route was associated with the second most species. Although it remains to be seen how this present-day geography reflects the paleo dispersal routes, our results show the potential of using mammal species to investigate and bring new insights about the past connections between Amazonia and the Atlantic Forest.


Assuntos
Distribuição Animal/fisiologia , Filogeografia/métodos , Distribuição Animal/classificação , Animais , Biodiversidade , Brasil , Bases de Dados Genéticas , Ecossistema , Florestas , Mamíferos/classificação , Filogenia , América do Sul
9.
Sci Rep ; 11(1): 7606, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828125

RESUMO

Tardigrades constitute a micrometazoan phylum usually considered as taxonomically challenging and therefore difficult for biogeographic analyses. The genus Pseudechiniscus, the second most speciose member of the family Echiniscidae, is commonly regarded as a particularly difficult taxon for studying due to its rarity and homogenous sculpturing of the dorsal plates. Recently, wide geographic ranges for some representatives of this genus and a new hypothesis on the subgeneric classification have been suggested. In order to test these hypotheses, we sequenced 65 Pseudechiniscus populations extracted from samples collected in 19 countries distributed on 5 continents, representing the Neotropical, Afrotropical, Holarctic, and Oriental realms. The deep subdivision of the genus into the cosmopolitan suillus-facettalis clade and the mostly tropical-Gondwanan novaezeelandiae clade is demonstrated. Meridioniscus subgen. nov. is erected to accommodate the species belonging to the novaezeelandiae lineage characterised by dactyloid cephalic papillae that are typical for the great majority of echiniscids (in contrast to pseudohemispherical papillae in the suillus-facettalis clade, corresponding to the subgenus Pseudechiniscus). Moreover, the evolution of morphological traits (striae between dorsal pillars, projections on the pseudosegmental plate IV', ventral sculpturing pattern) crucial in the Pseudechiniscus taxonomy is reconstructed. Furthermore, broad distributions are emphasised as characteristic of some taxa. Finally, the Malay Archipelago and Indochina are argued to be the place of origin and extensive radiation of Pseudechiniscus.


Assuntos
Tardígrados/classificação , Tardígrados/genética , Animais , Genótipo , Fenótipo , Filogenia , Filogeografia/métodos , Análise de Sequência de DNA/métodos
10.
Curr Protoc ; 1(4): e98, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33836121

RESUMO

Advances in sequencing technologies have tremendously reduced the time and costs associated with sequence generation, making genomic data an important asset for routine public health practices. Within this context, phylogenetic and phylogeographic inference has become a popular method to study disease transmission. In a Bayesian context, these approaches have the benefit of accommodating phylogenetic uncertainty, and popular implementations provide the possibility to parameterize the transition rates between locations as a function of epidemiological and ecological data to reconstruct spatial spread while simultaneously identifying the main factors impacting the spatial spread dynamics. Recent developments enable researchers to make use of travel history data of infected individuals in the reconstruction of pathogen spread, offering increased inference accuracy and mitigating sampling bias. Here, we describe a detailed workflow to reconstruct the spatial spread of a pathogen through Bayesian phylogeographic analysis in discrete space using these novel approaches, implemented in BEAST. The individual protocols focus on how to incorporate molecular data, covariates of spread, and individual travel history data into the analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Creating a SARS-CoV-2 MSA using sequences from GISAID Basic Protocol 2: Setting up a discrete trait phylogeographic reconstruction in BEAUti Basic Protocol 3: Phylogeographic reconstruction incorporating travel history information Basic Protocol 4: Visualizing ancestral spatial trajectories for specific taxa.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Viagem/estatística & dados numéricos , Teorema de Bayes , COVID-19/genética , COVID-19/transmissão , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Humanos , Filogenia , Filogeografia/métodos , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Análise de Sequência de DNA/métodos , Software , Estados Unidos/epidemiologia
11.
Nat Commun ; 12(1): 2188, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846321

RESUMO

Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non-pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were examined in relation to the dates of the most stringent interventions in each location as well as to the number of cumulative COVID-19 deaths and phylodynamic estimates of epidemic size. Here we report that the time elapsed between epidemic origin and maximum intervention is associated with different measures of epidemic severity and explains 11% of the variance in reported deaths one month after the most stringent intervention. Locations where strong non-pharmaceutical interventions were implemented earlier experienced much less severe COVID-19 morbidity and mortality during the period of study.


Assuntos
COVID-19/diagnóstico , Controle de Doenças Transmissíveis/métodos , Filogenia , Filogeografia/métodos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Epidemias , Humanos , Saúde Pública/métodos , Saúde Pública/estatística & dados numéricos , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença
12.
Nat Commun ; 12(1): 1810, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753725

RESUMO

For most pathogens, transmission is driven by interactions between the behaviours of infectious individuals, the behaviours of the wider population, the local environment, and immunity. Phylogeographic approaches are currently unable to disentangle the relative effects of these competing factors. We develop a spatiotemporally structured phylogenetic framework that addresses these limitations by considering individual transmission events, reconstructed across spatial scales. We apply it to geocoded dengue virus sequences from Thailand (N = 726 over 18 years). We find infected individuals spend 96% of their time in their home community compared to 76% for the susceptible population (mainly children) and 42% for adults. Dynamic pockets of local immunity make transmission more likely in places with high heterotypic immunity and less likely where high homotypic immunity exists. Age-dependent mixing of individuals and vector distributions are not important in determining spread. This approach provides previously unknown insights into one of the most complex disease systems known and will be applicable to other pathogens.


Assuntos
Algoritmos , Vírus da Dengue/genética , Dengue/transmissão , Modelos Teóricos , Adulto , Aedes/virologia , Animais , Criança , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/fisiologia , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Humanos , Mosquitos Vetores/virologia , Filogenia , Filogeografia/métodos , Filogeografia/estatística & dados numéricos , Dinâmica Populacional , Tailândia/epidemiologia
13.
PLoS Pathog ; 17(3): e1009236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33730096

RESUMO

Understanding the dynamics of white-nose syndrome spread in time and space is an important component for the disease epidemiology and control. We reported earlier that a novel partitivirus, Pseudogymnoascus destructans partitivirus-pa, had infected the North American isolates of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We showed that the diversity of the viral coat protein sequences is correlated to their geographical origin. Here we hypothesize that the geographical adaptation of the virus could be used as a proxy to characterize the spread of white-nose syndrome. We used over 100 virus isolates from diverse locations in North America and applied the phylogeographic analysis tool BEAST to characterize the spread of the disease. The strict clock phylogeographic analysis under the coalescent model in BEAST showed a patchy spread pattern of white-nose syndrome driven from a few source locations including Connecticut, New York, West Virginia, and Kentucky. The source states had significant support in the maximum clade credibility tree and Bayesian stochastic search variable selection analysis. Although the geographic origin of the virus is not definite, it is likely the virus infected the fungus prior to the spread of white-nose syndrome in North America. We also inferred from the BEAST analysis that the recent long-distance spread of the fungus to Washington had its root in Kentucky, likely from the Mammoth cave area and most probably mediated by a human. The time to the most recent common ancestor of the virus is estimated somewhere between the late 1990s to early 2000s. We found the mean substitution rate of 2 X 10-3 substitutions per site per year for the virus which is higher than expected given the persistent lifestyle of the virus, and the stamping-machine mode of replication. Our approach of using the virus as a proxy to understand the spread of white-nose syndrome could be an important tool for the study and management of other infectious diseases.


Assuntos
Ascomicetos/virologia , Quirópteros/virologia , Nariz/virologia , Filogeografia , Animais , Teorema de Bayes , Quirópteros/microbiologia , Nariz/microbiologia , Filogenia , Filogeografia/métodos
14.
Sci Rep ; 11(1): 4147, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603069

RESUMO

In East Asia, genetic divergence is usually considered to be correlated to different floristic regions, however, subtropical-tropical divergence is largely ignored, compared to widely explored temperate-subtropical divergence. Lindera aggregata (Lauraceae), a dominant species in South-East China was selected to address this issue. Fifteen low-copy nuclear genes (LCGs) and four chloroplast DNA (cpDNA) fragments were used to detect its evolutionary history. In LCGs, STRUCTURE and dated Bayesian phylogeny analyses detect distinct subtropical-tropical divergence since late Pleistocene. Approximate Bayesian calculation (ABC) further supports the distinct subtropical-tropical divergence, and close related Taiwan and South China populations are diverged at the last interglacial. Isolation by distance, isolation by environment and isolation by resistance analyses suggest the current climatic difference rather than geographical distance contributes to the genetic differentiation. Principle component analysis shows populations of tropical cluster occur in warmer area with higher precipitation. Ancestral area reconstruction based on Bayesian phylogeny indicates that ancestral L. aggregata populations are distributed in tropical region. In cpDNA, although unique haplotypes are found in tropical region, distinct subtropical-tropical divergence is absent. In conclusion, distinct late Pleistocene subtropical-tropical divergence of L. aggregata is triggered by climate. It is likely that L. aggregata is originated in Southwest-South China and experienced hierarchical dispersal from south to north. The South China Sea land bridge has dual role in connecting or isolating Taiwan and mainland populations since the last glaciation.


Assuntos
Cloroplastos/genética , DNA de Cloroplastos/genética , Variação Genética/genética , Teorema de Bayes , China , Clima , Evolução Molecular , Ásia Oriental , Haplótipos/genética , Lauraceae/genética , Filogenia , Filogeografia/métodos , Análise de Sequência de DNA/métodos
15.
Mol Biol Evol ; 38(8): 3486-3493, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33528560

RESUMO

Spatially explicit phylogeographic analyses can be performed with an inference framework that employs relaxed random walks to reconstruct phylogenetic dispersal histories in continuous space. This core model was first implemented 10 years ago and has opened up new opportunities in the field of phylodynamics, allowing researchers to map and analyze the spatial dissemination of rapidly evolving pathogens. We here provide a detailed and step-by-step guide on how to set up, run, and interpret continuous phylogeographic analyses using the programs BEAUti, BEAST, Tracer, and TreeAnnotator.


Assuntos
Filogeografia/métodos , Software , Teorema de Bayes , Evolução Biológica
16.
PLoS Comput Biol ; 17(1): e1008561, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406072

RESUMO

Phylogeographic inference allows reconstruction of past geographical spread of pathogens or living organisms by integrating genetic and geographic data. A popular model in continuous phylogeography-with location data provided in the form of latitude and longitude coordinates-describes spread as a Brownian motion (Brownian Motion Phylogeography, BMP) in continuous space and time, akin to similar models of continuous trait evolution. Here, we show that reconstructions using this model can be strongly affected by sampling biases, such as the lack of sampling from certain areas. As an attempt to reduce the effects of sampling bias on BMP, we consider the addition of sequence-free samples from under-sampled areas. While this approach alleviates the effects of sampling bias, in most scenarios this will not be a viable option due to the need for prior knowledge of an outbreak's spatial distribution. We therefore consider an alternative model, the spatial Λ-Fleming-Viot process (ΛFV), which has recently gained popularity in population genetics. Despite the ΛFV's robustness to sampling biases, we find that the different assumptions of the ΛFV and BMP models result in different applicabilities, with the ΛFV being more appropriate for scenarios of endemic spread, and BMP being more appropriate for recent outbreaks or colonizations.


Assuntos
Genética Populacional/métodos , Modelos Genéticos , Filogeografia/métodos , Viés de Seleção , Teorema de Bayes , Biologia Computacional , Surtos de Doenças/estatística & dados numéricos , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Humanos , Cadeias de Markov
17.
Hum Genet ; 140(2): 299-307, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32666166

RESUMO

The genomes of present-day humans outside Africa originated almost entirely from a single out-migration ~ 50,000-70,000 years ago, followed by mixture with Neanderthals contributing ~ 2% to all non-Africans. However, the details of this initial migration remain poorly understood because no ancient DNA analyses are available from this key time period, and interpretation of present-day autosomal data is complicated due to subsequent population movements/reshaping. One locus, however, does retain male-specific information from this early period: the Y chromosome, where a detailed calibrated phylogeny has been constructed. Three present-day Y lineages were carried by the initial migration: the rare haplogroup D, the moderately rare C, and the very common FT lineage which now dominates most non-African populations. Here, we show that phylogenetic analyses of haplogroup C, D and FT sequences, including very rare deep-rooting lineages, together with phylogeographic analyses of ancient and present-day non-African Y chromosomes, all point to East/Southeast Asia as the origin 50,000-55,000 years ago of all known surviving non-African male lineages (apart from recent migrants). This observation contrasts with the expectation of a West Eurasian origin predicted by a simple model of expansion from a source near Africa, and can be interpreted as resulting from extensive genetic drift in the initial population or replacement of early western Y lineages from the east, thus informing and constraining models of the initial expansion.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , África , DNA/genética , Emigração e Imigração , Genética Populacional/métodos , Genoma Humano/genética , Haplótipos/genética , Humanos , Masculino , Filogenia , Filogeografia/métodos
18.
Sci Rep ; 10(1): 20831, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257791

RESUMO

Dolphin morbillivirus (DMV) is considered an emerging threat having caused several epidemics worldwide. Only few DMV genomes are publicly available. Here, we report the use of target enrichment directly from cetacean tissues to obtain novel DMV genome sequences, with sequence comparison and phylodynamic analysis. RNA from 15 tissue samples of cetaceans stranded along the Italian and French coasts (2008-2017) was purified and processed using custom probes (by bait hybridization) for target enrichment and sequenced on Illumina MiSeq. Data were mapped against the reference genome, and the novel sequences were aligned to the available genome sequences. The alignment was then used for phylogenetic and phylogeographic analysis using MrBayes and BEAST. We herein report that target enrichment by specific capture may be a successful strategy for whole-genome sequencing of DMV directly from field samples. By this strategy, 14 complete and one partially complete genomes were obtained, with reads mapping to the virus up to 98% and coverage up to 7800X. The phylogenetic tree well discriminated the Mediterranean and the NE-Atlantic strains, circulating in the Mediterranean Sea and causing two different epidemics (2008-2015 and 2014-2017, respectively), with a limited time overlap of the two strains, sharing a common ancestor approximately in 1998.


Assuntos
Golfinhos/virologia , Infecções por Morbillivirus/genética , Morbillivirus/genética , Animais , Sequência de Bases , Cetáceos/genética , Cetáceos/virologia , Golfinhos/genética , França , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Mar Mediterrâneo , Metagenômica/métodos , Morbillivirus/patogenicidade , Infecções por Morbillivirus/epidemiologia , Infecções por Morbillivirus/veterinária , Filogenia , Filogeografia/métodos , Sequenciamento Completo do Genoma
19.
Sci Rep ; 10(1): 20544, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239750

RESUMO

Fishes in the mesopelagic zone (200-1000 m) have recently been highlighted for potential exploitation. Here we assess global phylogeography in Maurolicus, the Pearlsides, an ecologically important group. We obtained new sequences from mitochondrial COI and nuclear ITS-2 from multiple locations worldwide, representing 10 described species plus an unknown central South Pacific taxon. Phylogenetic analyses identified five geographically distinct groupings, three of which comprise multiple described species. Species delimitation analyses suggest these may represent four species. Maurolicus muelleri and M. australis are potentially a single species, although as no shared haplotypes are found between the two disjunct groups, we suggest maintenance of these as two species. Maurolicus australis is a predominantly southern hemisphere species found in the Pacific, Indian and southern South Atlantic Oceans, comprising five previously allopatric species. M. muelleri (previously two species) is distributed in the North Atlantic and Mediterranean Sea. Maurolicus weitzmani (previously two species) inhabits the eastern equatorial Atlantic, Gulf of Mexico and western North and South Atlantic. Maurolicus mucronatus is restricted to the Red Sea. No Maurolicus have previously been reported in the central South Pacific but we have identified a distinct lineage from this region, which forms a sister group to Maurolicus from the Red Sea.


Assuntos
DNA Mitocondrial/genética , Peixes/genética , Animais , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Peixes/metabolismo , Variação Genética/genética , Genótipo , Haplótipos/genética , Mitocôndrias/genética , Filogenia , Filogeografia/métodos , Análise de Sequência de DNA/métodos , Especificidade da Espécie
20.
J. negat. no posit. results ; 5(11): 1367-1377, nov. 2020. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-201155

RESUMO

INTRODUCCIÓN: Helicobacter pylori posee un genoma de aproximadamente 1600 genes, el gen glmM está altamente conservado y se ha utilizado para identificar H. pylori por su sensibilidad y especificidad en biopsias gástricas. La diversidad genética de H. pylori es alta entre cepas del mismo origen geográfico y es aún más a escala global. En México, son pocos los estudios que destacan la importancia de la variabilidad genética de esta bacteria, la cual es estudiada mediante técnicas moleculares. OBJETIVO: Analizar la variabilidad genética del gen glmM en cepas de H pylori de pacientes con patologías gástricas. METODOLOGÍA: Se analizaron solo 90 secuencias del gen glmM (10 de grupo de estudio y 80 depositadas en el GenBank), posteriormente realizamos redes de haplotipos, donde se puede observar las diferencias en pasos mutacionales de las secuencias a nivel estatal y con otros grupos geográficos con el fin de hacer una reconstrucción de filogenia basada en las relaciones ancestro-descendiente. RESULTADOS: Las cepas analizadas provenían el 30% hombres y 70% mujeres, con una edad promedio de 42 años, con diagnóstico de gastritis, las secuencias de glmM mostraron variabilidad genética. De las secuencias analizadas, se propone confirmar la presencia de ocho haplotipos que se agrupan separados. CONCLUSIONES: Se sugiere hacer estudios detallados a nivel molecular de los haplotipos del gen glmM en cepas de H. pylori para conocer su distribución geográfica con la finalidad de conocer las cepas circulantes a nivel mundial y con esto evitar los resultados negativos


INTRODUCTION: Helicobacter pylori has a genome of approximately 1600 genes, the glmM gene is highly conserved and has been identified to identify H. pylori due to its sensitivity and specificity in gastric biopsies. The genetic diversity of H. pylori is high among strains of the same geographical origin and is even more of a global scale. In Mexico, studies that study the importance of the genetic variability of this bacterium, which is studied by molecular techniques. AIM: To analyze the genetic variability of the glmM genus in H pylori strains of patients with gastric pathologies. METHODOLOGY: Only 90 sequences of the glmM genus were analyzed (10 of study group and 80 deposit in GenBank), to carry out haplotype networks, where the differences in the steps of the relationships at the state level and with other geographical groups can be observed in order to do a reconstruction of phylogeny based on ancestor-descendant relationships. RESULTS: The strains analyzed showed 30% of men and 70% of women, with an average age of 42 years, diagnosed with gastritis, the glmM sequences. From the sequences analyzed, it is proposed to confirm the presence of eight haplotypes that are grouped separately. CONCLUSIONS: We suggest university studies at the molecular level of the glmM haplotypes in strains of H. pylori to know their geographical distribution in order to know the circulating strains worldwide and with this avoid negative results


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Helicobacter pylori/genética , Infecções por Helicobacter/diagnóstico , Gastroenteropatias/microbiologia , Filogeografia/métodos , México/epidemiologia , Helicobacter pylori/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase/métodos , Amplificação de Genes/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...